trait Lifecycle[+F[_], +OuterResource] extends AnyRef
Lifecycle is a class that describes the effectful allocation of a resource and its finalizer.
This can be used to represent expensive resources.
Resources can be created using Lifecycle.make:
def open(file: File): Lifecycle[IO, BufferedReader] = Lifecycle.make( acquire = IO { new BufferedReader(new FileReader(file)) } )(release = reader => IO { reader.close() })
Using inheritance from Lifecycle.Basic:
final class BufferedReaderResource( file: File ) extends Lifecycle.Basic[IO, BufferedReader] { def acquire: IO[BufferedReader] = IO { new BufferedReader(new FileReader(file)) } def release(reader: BufferedReader): IO[BufferedReader] = IO { reader.close() } }
Using constructor-based inheritance from Lifecycle.Make, Lifecycle.LiftF, etc:
final class BufferedReaderResource( file: File ) extends Lifecycle.Make[IO, BufferedReader]( acquire = IO { new BufferedReader(new FileReader(file)) }, release = reader => IO { reader.close() }, )
Or by converting from an existing cats.effect.Resource or a zio.ZManaged:
- Use Lifecycle.fromCats, Lifecycle.SyntaxLifecycleCats#toCats to convert from and to a cats.effect.Resource
- And Lifecycle.fromZIO, Lifecycle.SyntaxLifecycleZIO#toZIO to convert from and to a zio.ZManaged
Usage is done via use:
open(file1).use {
reader1 =>
open(file2).use {
reader2 =>
readFiles(reader1, reader2)
}
}Lifecycles can be combined into larger Lifecycles via Lifecycle#flatMap (and the associated for-comprehension syntax):
val res: Lifecycle[IO, (BufferedReader, BufferedReader)] = { for { reader1 <- open(file1) reader2 <- open(file2) } yield (reader1, reader2) }
Nested resources are released in reverse order of acquisition. Outer resources are released even if an inner use or release fails.
Lifecycle can be used without an effect-type with Lifecycle.Simple
it can also mimic Java's initialization-after-construction with Lifecycle.Mutable
Use Lifecycle's to specify lifecycles of objects injected into the object graph.
import distage.{Lifecycle, ModuleDef, Injector} import cats.effect.IO class DBConnection class MessageQueueConnection val dbResource = Lifecycle.make(IO { println("Connecting to DB!"); new DBConnection })(_ => IO(println("Disconnecting DB"))) val mqResource = Lifecycle.make(IO { println("Connecting to Message Queue!"); new MessageQueueConnection })(_ => IO(println("Disconnecting Message Queue"))) class MyApp(db: DBConnection, mq: MessageQueueConnection) { val run = IO(println("Hello World!")) } val module = new ModuleDef { make[DBConnection].fromResource(dbResource) make[MessageQueueConnection].fromResource(mqResource) make[MyApp] } Injector[IO]() .produceGet[MyApp](module) .use(_.run()) .unsafeRunSync()
Will produce the following output:
Connecting to DB! Connecting to Message Queue! Hello World! Disconnecting Message Queue Disconnecting DB
The lifecycle of the entire object graph is itself expressed with Lifecycle,
you can control it by controlling the scope of .use or by manually invoking
Lifecycle#acquire and Lifecycle#release.
Inheritance helpers
The following helpers allow defining Lifecycle sub-classes using expression-like syntax:
- Lifecycle.Of
- Lifecycle.OfInner
- Lifecycle.OfCats
- Lifecycle.OfZIO
- Lifecycle.LiftF
- Lifecycle.Make
- Lifecycle.Make_
- Lifecycle.MakePair
- Lifecycle.FromAutoCloseable
- Lifecycle.SelfOf
- Lifecycle.MutableOf
The main reason to employ them is to workaround a limitation in Scala 2's eta-expansion — when converting a method to a function value,
Scala always tries to fulfill implicit parameters eagerly instead of making them parameters of the function value,
this limitation makes it harder to inject implicits using distage.
However, when using distage's type-based syntax: make[A].fromResource[A.Resource[F]] —
this limitation does not apply and implicits inject successfully.
So to workaround the limitation you can convert an expression based resource-constructor such as:
import distage.Lifecycle, cats.Monad class A object A { def resource[F[_]](implicit F: Monad[F]): Lifecycle[F, A] = Lifecycle.pure(new A) }
Into a class-based form:
import distage.Lifecycle, cats.Monad class A object A { final class Resource[F[_]](implicit F: Monad[F]) extends Lifecycle.Of( Lifecycle.pure(new A) ) }
And inject successfully using make[A].fromResource[A.Resource[F]] syntax of izumi.distage.model.definition.dsl.ModuleDefDSL.
The following helpers ease defining Lifecycle sub-classes using traditional inheritance where acquire/release parts are defined as methods:
- Alphabetic
- By Inheritance
- Lifecycle
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Type Members
- abstract type InnerResource
Abstract Value Members
- abstract def acquire: F[InnerResource]
The action in
Fused to acquire the resource.The action in
Fused to acquire the resource.- Note
the
acquireaction is performed *uninterruptibly*, whenFis an effect type that supports interruption/cancellation.
- abstract def extract[B >: OuterResource](resource: InnerResource): Either[F[B], B]
Either an action in
For a pure function used to extract theOuterResourcefrom theInnerResourceEither an action in
For a pure function used to extract theOuterResourcefrom theInnerResourceThe effect in the
Leftbranch will be performed *interruptibly*, it is not afforded the same kind of safety asacquireandreleaseactions whenFis an effect type that supports interruption/cancellation.When
FisIdentity, it doesn't matter whether the output is aLeftorRightbranch.When consuming the output of
extractyou can use_.fold(identity, F.pure)to convert theEithertoF[B]- See also
Lifecycle.Basic
extractdoesn't have to be defined when inheriting fromLifecycle.Basic
- abstract def release(resource: InnerResource): F[Unit]
The action in
Fused to release, close or deallocate the resource after it has been acquired and used through izumi.distage.model.definition.Lifecycle.SyntaxUse#use.The action in
Fused to release, close or deallocate the resource after it has been acquired and used through izumi.distage.model.definition.Lifecycle.SyntaxUse#use.- Note
the
releaseaction is performed *uninterruptibly*, whenFis an effect type that supports interruption/cancellation.
Concrete Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- final def beforeAcquire[G[x] >: F[x]](f: => G[Unit])(implicit arg0: QuasiApplicative[G]): Lifecycle[G, OuterResource]
- final def beforeRelease[G[x] >: F[x]](f: (InnerResource) => G[Unit])(implicit arg0: QuasiApplicative[G]): Lifecycle[G, OuterResource]
Prepend release action to existing
- final def catchAll[G[x] >: F[x], B >: OuterResource](recover: (Throwable) => Lifecycle[G, B])(implicit arg0: QuasiIO[G]): Lifecycle[G, B]
- final def catchSome[G[x] >: F[x], B >: OuterResource](recover: PartialFunction[Throwable, Lifecycle[G, B]])(implicit arg0: QuasiIO[G]): Lifecycle[G, B]
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native()
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- final def evalMap[G[x] >: F[x], B](f: (OuterResource) => G[B])(implicit arg0: QuasiPrimitives[G]): Lifecycle[G, B]
- final def evalTap[G[x] >: F[x]](f: (OuterResource) => G[Unit])(implicit arg0: QuasiPrimitives[G]): Lifecycle[G, OuterResource]
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable])
- final def flatMap[G[x] >: F[x], B](f: (OuterResource) => Lifecycle[G, B])(implicit arg0: QuasiPrimitives[G]): Lifecycle[G, B]
- final def flatten[G[x] >: F[x], B](implicit arg0: QuasiPrimitives[G], ev: <:<[OuterResource, Lifecycle[G, B]]): Lifecycle[G, B]
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def map[G[x] >: F[x], B](f: (OuterResource) => B)(implicit arg0: QuasiFunctor[G]): Lifecycle[G, B]
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def redeem[G[x] >: F[x], B](onFailure: (Throwable) => Lifecycle[G, B], onSuccess: (OuterResource) => Lifecycle[G, B])(implicit arg0: QuasiIO[G]): Lifecycle[G, B]
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- final def void[G[x] >: F[x]](implicit arg0: QuasiFunctor[G]): Lifecycle[G, Unit]
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def widen[B >: OuterResource]: Lifecycle[F, B]
- Annotations
- @inline()
- final def widenF[G[x] >: F[x]]: Lifecycle[G, OuterResource]
- Annotations
- @inline()
- final def wrapAcquire[G[x] >: F[x]](f: (=> G[InnerResource]) => G[InnerResource]): Lifecycle[G, OuterResource]
Wrap acquire action of this resource in another effect, e.g.
Wrap acquire action of this resource in another effect, e.g. for logging purposes
- final def wrapRelease[G[x] >: F[x]](f: ((InnerResource) => G[Unit], InnerResource) => G[Unit]): Lifecycle[G, OuterResource]
Wrap release action of this resource in another effect, e.g.
Wrap release action of this resource in another effect, e.g. for logging purposes